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Abstract
What are the building blocks of our visual representations?Whatever we look at, the things we

see will have some feature variability: even snow is not purely white but has a range of shades

of white. However, in most studies investigating visual perception, homogeneous displays

with all stimuli having a very limited range of features have been used. In contrast, recent stud-

ies using heterogeneous displays have shown that our perceptual system encodes surprisingly

detailed information about stimuli, representing parameters such as the mean, variance, and

most importantly the probability density functions of feature distributions. Learning the pa-

rameters of the distributions takes time as distribution representations are continuously

updated with incoming information. However, the mechanisms guiding this process are not

yet known. We will review current knowledge about the sampling and updating of represen-

tations of feature distributions in heterogeneous displays and will present new findings pro-

viding further insights into this process. Overall, the results show that representations of

distributions can be remarkably detailed and shed light on how the information provided af-

fects the learning of feature distributions. Observers’ ability to quickly encode the probability

density function of distributions in the environment may potentially provide novel interpreta-

tions of a number of well-known phenomena in visual perception.
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1 INTRODUCTION
When you look out your window, youmight see the sky, some trees, maybe a road, or

a walkway. How do we represent the things we see outside our window? The text-

book answer is that there are features in the image that are bound together during

perceptual processing to create objects. Features are globally independent, in the

sense that processing of a feature at one location does not depend on features at an-

other location except for possible local interactions. This view is undermined, how-

ever, by studies showing that summary statistics, the properties of features

aggregated over sets of stimuli or spatial locations, are no less important than specific

features in perceptual processing (Albrecht and Scholl, 2010; Alvarez, 2011; Alvarez

and Oliva, 2008; Ariely, 2001; Chong and Treisman, 2003, 2005; Dakin and Watt,

1997; Parkes et al., 2001). Moreover, the gist of a scene based on the summary rep-

resentation of elements in the ensemble can be grasped even with short presentation

times and even if they are unattended, while individual features can bemissed (Brand

et al., 2012; Chong and Treisman, 2005; Emmanouil and Treisman, 2008; Whiting

and Oriet, 2011). Recent findings also indicate that observes can encode probability
distributions of features instead of indiscriminately using approximations with a lim-

ited set of summary statistics (Chetverikov et al., 2016, 2017c). Representations of

distributions are then continuously updated when new information is obtained, with

complex distributions requiring more information for accurate encoding than simpler

ones (Chetverikov et al., 2017a). As a result, perceptual ensembles might play a key

role in the richness of perceptual experience (Cohen et al., 2016).

The idea of perception as probabilistic inference is certainly not new but currently

experiences a revival (Feldman, 2014; Feldman and Friston, 2010; Fiser et al., 2010;

Ma, 2012; Ma et al., 2011, 2015; Rao et al., 2002; Seriès and Seitz, 2013; Yuille and

Kersten, 2006). However, we argue that the implications of perception with proba-

bilistic representations, that is, distribution encoding, are severely underappreciated
and have far-reaching consequences for the scientific study of visual perception.

We suggest that it is time to step away from the idea of features as single values,

and switch to a new perspective with probability distributions as a basic unit of anal-

ysis. We propose that the perceptual system accumulates information about features

over and above local values (e.g., a color value of a single pixel), local feature con-

trasts (e.g., when orientation or brightness change abruptly), and simple statistics

such as measures of central tendency or variability. Instead, probability density func-

tions (PDFs) of feature distributions are assembled and represented in perception and

the obtained information is used to guide vision. The PDF is a well-known concept in

statistics, defined simply as a function that describes the relative likelihood that a
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random variable will have a given value. A representation of features as a PDF im-

plies that for a given stimulus a representation of its property is not a single value or a

set of values but rather a function determining how likely it is that the stimulus has a

given value. Knowledge about feature distributions allows observers to behave in a

Bayes-optimal way by using probability densities for search, categorization, and

other visual function (e.g., Ma et al., 2011, 2015; Vincent et al., 2009). Unlike com-

puter displays, however, where the exact color value of a pixel can be measured by

using a photometer, there is always some uncertainty in representations. Thus,

Bayes-optimal computing does not mean that observers are ideal: they might have

to rely on approximations to represent distributions (see Section 2).

We further assume that such representational PDFs can either be bound to spe-

cific locations in the visual scene or to entities not bound to a single location. Imagine

that you are looking for your cat in the backyard (Fig. 1B). The trees and bushes have

a specific distribution of colors and a specific location, while your cat has a specific

distribution of colors but can be anywhere. Global, nonbound PDFs are more diffi-

cult to learn, but the evidence for their existence is abundant in the literature on nat-

ural environment statistics (Coppola et al., 1998; Girshick et al., 2011; Long et al.,

2006; van Bergen et al., 2015; Yang and Purves, 2004). Locally bound PDFs, on the

other hand, are easier to learn but are also more likely to dissipate easily (Section 3).

We further argue that the distribution-based framework advances our under-

standing of visual processing by providing simple explanations for some previously

well-known phenomena and by predicting new findings, some of which we test in

the experiments described later. Although we focus mainly on visual search, we

believe that the present framework has important implications for studies of vision

in general. Indeed, we also describe some potential applications of the framework

to other topics within the visual perception literature (Section 4).

2 WHAT IS A “DISTRIBUTION” OF FEATURES AND HOW
IS IT REPRESENTED?
It is easy to define a distribution when generating stimuli: one can select from a range

of well-defined PDFs (e.g., Gaussian or uniform) and generate random numbers con-

forming to that function. However, what is a distribution of features when we try to

assess it from empirical data? Imagine that a researcher randomly picks one hundred

colored patches from a distribution of colors with hues varying uniformly from

�30 to +30 on some arbitrary dimension. The observed probabilities of each value

will be different from the true distribution (Fig. 2). These observed values are noisy

because the values are picked randomly. In real-life scenes there can be many more

observed values, but they still would not represent the true distribution due to inher-

ent external and internal noise. In general, a sample can never be a true representation

of the underlying distribution, and a representation of a distribution will therefore

always involve approximations to some degree in order to reduce noise.
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FIG. 1

Unlike the artificial displays used in many laboratory experiments (A), the colors in the natural

scenes contain a multitude of hues and shapes (A and B). A target and distractors in a real-

world visual search task, for example (such as the cat and the grass in (B)), do not have

homogeneous colors, but their colors are not random either. Rather, they come from specific

probability distributions. Given a stimulus display (C), it is hard to match the depicted stimuli

to the correct distributions. If you look at the oriented lines, can you tell whether they come

from a uniform distribution of distractor orientations or from aGaussian one? This seems like a

difficult problem. Nevertheless, only a few examples of such displays, search times provide

evidence that our visual systems can tell such distributions apart. Panel (D) shows the

correspondence between the internal representation of a distribution as revealed by response

times and the physical distribution of stimuli (see details in text). Note that while the response

time functions show remarkable similarity to the actual PDF’s (there is a monotonic

relationship between the two), there is nevertheless not a one-to-one correspondence

between the physical PDF of stimuli (lower plot) and the PDF estimated using search times

(upper plot).

Panel (D) adapted from experiment 3C, Chetverikov, A., Campana, G., Kristjánsson, Á., 2016. Building

ensemble representations: how the shape of preceding distractor distributions affects visual search.

Cognition 153, 196–210. http://dx.doi.org/10.1016/j.cognition.2016.04.018.
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Such approximations can provide optimal fits to empirical data, yet they will al-

ways be different from the true distribution, since they will unavoidably reflect sam-

pling error in addition to the distribution itself. On the other hand, overfitting or

underfitting can provide closer fits to the true distribution while being further away

from the data. In computer algorithms the degree of approximation can be controlled,

for example, through bandwidth parameters when kernel density estimation is used

to determine the shape of some function. In the brain, the resulting approximation

might depend, among other parameters, on the width of neuron tuning curves or

on the strength of lateral inhibitory connections. In sum, there is a difference between

the true distribution of features and a representation of that distribution, and the rep-

resentation that fits the data is not necessarily the best approximation of the true

distribution.

In our studies, we have used visual search tasks to estimate observers’ internal

representations of distributions in the environment. In a typical experiment, ob-

servers search for an odd-one-out target among a setlines differing in orientation

serving as distractors (Chetverikov et al., 2016, 2017a) or search for an oddly colored

diamond (Chetverikov et al., 2017c). The distractors on each trial were randomly

drawn from a specific distribution (see an example of orientation search display

in Fig. 1C). During several adjacent trials (depending on the experiment; the number

of repetitions varied from 1 to 11, with 5 to 7 repetitions being the standard),

FIG. 2

Examples of the difference between a true distribution of an arbitrary feature distribution

(ranging from �30 to +30 in this example), empirically observed probabilities and estimated

distributions. Dots show mean empirical probabilities, while lines show the true distribution

(which is in this case uniform), and different fits. While the optimal fit (as determined by

Sheather and Jones (1991) algorithm implemented in bw.SJ in R) provides a balance

between the observed data and a true distribution, the underfitted curve is closer to the true

distribution, and the overfitted curve is closer to the observed data.
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parameters of the distractor distribution were kept constant and target orientation was

either kept constant as well or varied randomly. Then, test trials followed where dis-

tractor distributions and the target had different distances in feature space (e.g., ori-

entation or color) from themean of a previous distractor distribution. It is well known

that when observers expect distractors to have specific features, they respond slower

when these features instead belong to the target (referred to as “role reversals,”

Kristjánsson and Driver, 2005, 2008; Lamy et al., 2008; Maljkovic and

Nakayama, 1994; Wang et al., 2005). This means that measuring response times

(RTs) as a function of the distance in feature space between the target and the mean

of previous distractor distributions (CT-PD, current target to previous distractor dis-

tance) allows us to assess observers’ representations of previously encountered dis-

tractor distributions, and therefore expectations about successive ones. If the

presented target causes a role-reversal effect, we can assume that it has a feature that

belongs to the set of expected feature values for the distractor set. Looking at where

in the preceding distractor distribution this target belongs (CT-PD), and then mea-

suring the size of the role-reversal effect allows us to assess the representation of

the distribution.

Fig. 1D shows the results from one of our experiments where we compared rep-

resentations of uniform and Gaussian distributions using role-reversal effects to as-

sess distributions (experiment 3C, Chetverikov et al., 2016). The toplines show RTs

to targets depending on where they fell with respect to the previous distractor distri-

bution, presented for five to seven consecutive search trials that preceded the test

trial. While there is a correspondence between the physical distribution of stimuli

and their perceptual representations (namely, there is a monotonic relationship be-

tween the two functions), it is not a simple one-to-one match. For example, a smooth

decrease is observed for the uniform distribution instead of a sharp drop in the right

part of the function. Comparisons of natural statistics and observers’ priors also re-

veal similarities without an exact match (e.g., Girshick et al., 2011). These data show

that the perceptual system uses approximations when processing and representing

empirical PDFs. It is probably not surprising given that there are many processing

stages involved, and the ultimate goal of perception is to guide our interaction with

the world, rather than to provide a precise representation of the environment.

3 WHEN ARE STIMULI TREATED AS DISTRIBUTIONS?
Our perceptual system may engage different mechanisms depending on whether

stimuli are treated as a bunch of isolated elements or as a set of exemplars from

the same distribution (Bacon and Egeth, 1991; Meinecke and Donk, 2002;

Nothdurft, 2000; Põder, 2006; Sagi and Julesz, 1987). For example, Sagi and

Julesz (1987) found nonmonotonic changes in search efficiency with increasing

stimulus density and suggested that preattentive processing of target–distractor con-
trasts is range limited and cannot be used with low-density displays. Bacon and Egeth

(1991), however, demonstrated that it is not target–distractor contrasts but
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distractor–distractor groupings that become easier with increasing display densities.

Thus, displays that allow grouping might be treated as single distributions, while

sparse displays might lead either to separation into subgroups with independently

estimated features or even to a lack of distribution processing at all. This can explain

our results from experiments with small set sizes where no distribution learning was

observed (Chetverikov et al., 2017b). Interestingly, by this logic it is possible that

two displays traditionally used in a variety of visual tasks, namely, annular displays

(with stimuli equidistant to fixation point) and field-like displays (with stimuli uni-

formly distributed over a circular or square field), might result in different kinds of

processing, complicating comparisons between them.

Spatial proximity is not the only factor that determines grouping of stimuli into

distributions. A typical finding when heterogeneous (bimodal) and homogeneous

search displays are compared is that it is easier to find a target among homogeneous

distractors than heterogeneous ones (Feldmann-W€ustefeld and Schub€o, 2013, 2015;
Mazza et al., 2009; Schub€o et al., 2007). This can be linked to distractor–distractor
grouping and a consequent shift to distribution processing. Further evidence for this

is provided by findings on “segmentability” that show more efficient visual search

for uniformly distributed distractors than for bimodal (consisting of two homoge-

neous distributions) or trimodal (three homogeneous) distributions with the same

range (Utochkin and Yurevich, 2016). In this study, the variance of uniform distri-

butions was lower than the variance of bimodal or trimodal ones. When distribution

parameters, such as the number of modes or its mean, change randomly on each trial

as in the experiments of Utochkin and Yurevich (2016), observers are likely to ap-

proximate bimodal or trimodal distributions as unimodal (see also Chetverikov et al.,

2017a, on representations of bimodal distributions) with higher variance or range

compared to the actual unimodal distribution. Search will therefore take longer in

the former than the latter case. As for spatial grouping discussed earlier, in the ex-

treme case, a lack of grouping by similarity might result in one-by-one stimulus pro-

cessing during search.

In general, the idea of grouping by proximity and similarity links distribution pro-

cessing to texture perception (Julesz, 1981; Wolfe, 1992; Wolfson and Landy, 1998;

see Landy, 2013; Rosenholtz, 2014 for recent reviews). For example, the Texture

Tiling Model utilizes a texture synthesis algorithm developed by Portilla and

Simoncelli (2000) to show that visual search performance, scene perception, or

crowding effects can be explained by the use of statistical summaries by peripheral

vision (Balas et al., 2009; Chang and Rosenholtz, 2016; Ehinger and Rosenholtz,

2016; Rosenholtz et al., 2012). Consider the toy example shown in Fig. 3. The orig-

inal stimulus displays (top row) from Chetverikov et al. (2017a) were reconstructed

using the texture synthesis model (Portilla and Simoncelli, 2000). The resulting tex-

tures (middle row) are remarkably similar to the original displays, and the statistics of

orientation distributions are largely intact although some finer details might be lost.

The critical point here is that this shows that a statistics-based representation poten-

tially used in texture perception might suffice for distribution encoding. So it should

be relatively easy for the visual system to represent the distribution even without
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applying attention to the periphery. The particular texture synthesis algorithm used in

this example operates on different scales and does not involve any assumptions about

the size of feature pooling regions. However, the Texture Tiling Model assumes that

peripheral vision uses small local samples (Rosenholtz et al., 2012). As argued ear-

lier, distribution encoding probably relies more on global processing. Feature

FIG. 3

Resynthesis of the displays used for distribution learning (Chetverikov et al., 2017a) with the

Portilla and Simoncelli (2000) texture synthesis algorithm. The original displays (top row) look

similar to the displays reconstructed by iteratively adjusting a number of statistics on five

spatial scales (middle row). Distribution of orientations in particular (bottom row) is relatively

intact after the reconstruction: the target (item oriented at approximately 120 degrees) is still

present, the number of modes is the same as in the original display. This shows that statistical

representations potentially used by our perceptual system even in analysis of peripheral

stimuli may suffice to obtain an accurate representation of a distribution.

8 Distribution-based framework for visual attention
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integration with larger pooling regions (as, for example, in the GIST model, Oliva

and Torralba, 2001; Ross and Oliva, 2010) might therefore better describe the mech-

anisms of distribution encoding.

4 SAMPLING AND UPDATING INFORMATION ABOUT
DISTRIBUTION
Observers can obtain information about feature distributions by sampling features

from different locations or by aggregating information over whole stimulus sets.

Dakin (2001, 2015) suggested that for orientation averaging, spatial arrangement

(e.g., the display density) does not matter and observers use √N samples (where

N is the number of stimuli) in their estimates. Others studies gave even lower esti-

mates for averaging in different feature domains (Maule and Franklin, 2016; Myczek

and Simons, 2008; Solomon et al., 2016; Tibber et al., 2015). These estimates often

rely on variance summation models where sampling strategies are assumed to be in-

dependent of noise (internal, i.e., from stimulus processing by the perceptual system

and external, i.e., from the stimuli themselves). The assumptions of such models

have recently been called into question, however (Allard and Cavanagh, 2012;

Bocheva et al., 2015; but see Dakin, 2015). Moreover, the estimates of sampling ef-

ficiency change depending on the task (e.g., estimates of variance against estimates

of mean; Solomon, 2010) and training (Moerel et al., 2016). It is not surprising then

that studies not relying on the variance summation model generally agree that stim-

ulus aggregation within a single ensemble occurs in parallel without strong proces-

sing limits (Attarha and Moore, 2015; Attarha et al., 2014; Dakin, 2001; Im and

Halberda, 2013; Robitaille and Harris, 2011; Tokita et al., 2016; Utochkin and

Tiurina, 2014).

Our own data suggest that information about distributions is unlikely to be

obtained by sampling only a few elements (Chetverikov et al., 2017b). Moreover,

the precision of distribution estimates in visual search grows with increased stimulus

set sizes. With only a few elements (N¼8 or 14), there is little evidence that ob-

servers have any representations of distributions at all. With larger set sizes

(N¼16 or 24), however, the distribution is encoded, but this encoding is imprecise

as the information about shape (uniform vs Gaussian) is lost. Only with the largest set

size (N¼36) did we find evidence of relatively precise distribution encoding

(Chetverikov et al., 2017b).

It is likely that other factors, such as attention, noise levels, and task relevance,

would affect the degree of approximation or precision of distribution encoding.

Moreover, the shape of the distribution can be heavily influenced by existing priors.

Humans are prone to biases in different domains, such as orientation, color, or mo-

tion perception, that can be explained by prior expectations arising from natural

world statistics (Girshick et al., 2011; Long et al., 2006; Purves and Lotto, 2003;

Seriès and Seitz, 2013; Sotiropoulos et al., 2011; Yang and Purves, 2004). Such

priors are likely to affect representations of distributions and their effects. For
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example, sensory uncertainty is higher for oblique than cardinal orientations due to

lower prior expectations (van Bergen et al., 2015). Accordingly, the heterogeneity of

distributions has stronger effects at cardinal orientations (Fig. 4, left panel; see also

Girshick et al., 2011). Intuitively, this shows that priors have stronger effects when

evidence is weak. Similarly, the effect of evidence should be stronger for weaker

priors. Hence, the actual distribution shape will affect observers’ perception less

strongly near-cardinal orientations than in between them as is indeed observed in

our data (Fig. 4, right panel).

5 SHORT-TERM AND LONG-TERM LEARNING OF
DISTRIBUTIONS
Once observers obtain a representation of the distribution, they continue updating it

as new information arrives. Studies of averaging over time indicate that observers

integrate information over time, but the estimates may be biased toward more recent

stimuli (Albrecht and Scholl, 2010; Attarha et al., 2016; Corbett and Oriet, 2011;

FIG. 4

The effects of distractor distribution mean on search time (left panel) demonstrate the typical

“oblique” effect. Search is faster when the distractor distribution is centered at cardinal

orientations (around 0/180 and 90 degrees) compared to oblique ones. Previous studies

suggest that this effect can be explained by decreased sensory uncertainty at cardinal

compared to oblique orientations (van Bergen et al., 2015). In accordance with this logic,

increasing stimulus heterogeneity increases the size of the oblique effect (cf. Girshick et al.,

2011). Sensory uncertainty also affects distribution encoding (right panel; see Fig. 1D for

comparison). The shape of the distribution is encoded with higher precision when it was

centered at oblique orientations compared to cardinals (based on reanalysis of the data from

experiment 2, 3A, and 3C, Chetverikov et al., 2016). Shaded areas show 95% confidence

intervals.
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Haberman et al., 2009; Hubert-Wallander and Boynton, 2015; Oriet and Hozempa,

2016). The aggregation happens even when it is irrelevant to the main task (Dub�e and
Sekuler, 2015; Oriet and Hozempa, 2016). Similarly, changes in distributions param-

eters (such as means and variance) from one trial to another increase processing time

(Corbett and Melcher, 2014; Michael et al., 2014). The impact of previously per-

ceived stimuli on the perception of the current one decreases with increased spatial

distance or time between them (Fischer and Whitney, 2014).

We found that the amount of information about a distribution picked up on pre-

vious exposures to it (on preceding search trials in this case) is an important param-

eter for complex distributions (Chetverikov et al., 2017a). That is, the precision of

estimates for a bimodal distribution increases with the number of repetitions in a vi-

sual search task, gradually changing from a unimodal to a bimodal representation.

But for simpler unimodal distributions (such as Gaussian or uniform ones), the dis-

tribution shape can be determined with relative ease following only one or two trials

(Chetverikov et al., 2017a). In other words, when the distribution is complex so that

their initial representation does not have enough precision, observers update the

existing representation with new data as it arrives.

It is not yet known whether and how such short-term changes relate to long-term

ones. To the best of our knowledge, perceptual learning studies come closest to an-

swering that question. Perceptual learning in its simplest variant is a special case of

distribution learning when observers are presented with a distribution with very low

variance (usually, a single reference value in each block). Observers’ task is to learn

to differentiate between this distribution and some other distribution with a gradually

decreasing difference between them.a From a distribution-based point of view, the

main difficulty of the task is to decrease the range within which the approximated

PDF of the reference distribution has nonzero values; in other words, to shrink

the represented distribution. The drawback of such learning is that values that are

close to the reference value will gradually fall out the range of the approximated

PDF, resulting in a decreased ability to discriminate between them.

Such an approach to perceptual learning is not new. Edelman and Intrator (2002)

discuss different models of how observers can estimate the probability density asso-

ciated with the underlying generator of data (e.g., the repeatedly presented stimulus).

For example, one can assume that the density is smooth and then estimate it by

adjusting the shape of underlying radial functions and/or the weights connecting

these functions with output variables (Poggio and Girosi, 1990). When considered

in this way, perceptual learning becomes essentially equivalent to learning probabil-

ity distributions of features. In line with this idea, Chalk et al. (2010) found that ob-

servers trained to estimate motion direction on stimuli from a bimodal distribution

(i.e., with two motion directions more probable than the rest) quickly begin to exhibit

biases in accordance with biases in the stimulus distributions. Their perception

aAlthough there are different forms of perceptual learning, such as category learning, or learning within

different modalities, here we only consider visual perceptual learning.
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shifted toward more probable directions. Moreover, when no motion was present but

observers thought that they had seen movement, their responses reproduced the prob-

ability distributions in the data. Importantly, using the same method, Gekas et al.

(2013) demonstrated that with a bimodal distribution observers overestimate the

probability of stimuli between the two modes of motion directions. That is, similar

to what was found by Chetverikov et al. (2017a) observers’ representations show ev-

idence of interpolation. In these experiments, the probability of a stimulus with fea-

tures between the two modes of a bimodal distribution was either very low (Gekas

et al., 2013) or no stimuli with such features were presented (Chetverikov et al.,

2017a). The perceptual system nevertheless represents the feature space between

the modes as if some of the presented stimuli had feature values from that region.

That is, rather than simply encoding highly probable features, it approximates the

data (Section 2) with a probability distribution that might be less precise but poten-

tially more useful when the true feature distribution is not known.

A potential challenge, however, to distribution-based explanations of perceptual

learning is that perceptual learning has long been considered to be retinotopically

specific (Karni and Sagi, 1993) or specific to the trained eye (Fahle et al., 1995), ar-

guing for an early locus for these effects such as the V1. But according to other more

recent findings, this alleged specificity may be a consequence of the actual para-

digms used rather than a principle of perceptual learning (Xiao et al., 2008;

Zhang et al., 2010). For example, Zhang et al. (2010) showed that brief pretests at

peripheral locations enabled transfer of foveal perceptual learning to the peripheral

sites. This finding clearly argues against a retinotopic locus for perceptual learning,

and these authors argue that the observed learning reflected activity modulation at

higher-level sites in visual processing. This suggests that perceptual learning reflects

rule-based learning where higher-level decision units reweigh V1 input.

Further evidence linking perceptual learning with probability distributions comes

from investigations of the role of existing priors in perception. For example, most of

the objects in the world are stationary or move at slow speeds, and motion speed per-

ception is accordingly biased in favor of slow speeds (Stocker and Simoncelli, 2006).

Sotiropoulos et al. (2011) showed that initial priors for slow motion change when

observers repeatedly perceive high-speed movement. In other words, observers’ rep-

resentation of motion speed can be described as a probability distribution that is de-

termined both by temporary influences of the momentary input, as well as priors

from long-term learning.

An interesting new avenue of perceptual learning research is task-irrelevant per-

ceptual learning of unattended features. Seitz and Watanabe (2005) found that a sub-

threshold motion signal (5% coherence of an array of moving dots) presented in the

background as observers performed a central RSVP task led to improved perfor-

mance on a subsequent suprathreshold (10% coherence) motion direction discrimi-

nation task. A distribution-based view of perceptual learning accounts for this by

assuming that observers can learn the characteristics of the distribution of the dots

and that this influences subsequent motion direction discrimination.
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6 IMPLICATIONS FOR VISUAL ATTENTION AND VISUAL
SEARCH
Visual search is one of the classic tasks used to investigate attention (Wolfe and

Horowitz, 2017). It is well known that the heterogeneity of distractors is one of

the major factors affecting search efficiency (Avraham et al., 2008; Banks and

Prinzmetal, 1976; Bundesen and Pedersen, 1983; Duncan and Humphreys, 1989;

Farmer and Taylor, 1980; Nagy and Thomas, 2003; Nagy et al., 2005; Utochkin

and Yurevich, 2016). The more heterogeneous the distractor sets, the slower the

search. Several models have been proposed to explain this, based on the idea of dis-

tractor grouping by similarity. For example, with the farthest-labeled nearest-

neighbor algorithm (Avraham et al., 2008) the difficulty of search depends on the

ratio of the distractor range to “target to nearest distractor distance” in feature space.

That is, if distractors are similar (small distractor range) and the target significantly

differs from all the distractors, search would be faster than if distractors are either

different from each other or the target is similar to any of the distractors. Similarly,

the best-normal approximation model suggested by Rosenholtz (2001) depends on

the ratio of distractor variance and target distance to the mean of the distractors.

In general, predictions within the proposed distribution-based framework are similar

to the ones of existing models: the more similar the distractors are to one another and

the less similar they are to targets, the faster the search. However, there is also a fun-

damental difference in the explanations of this rule. The distribution-based frame-

work suggests that the difficulty of search depends on the estimated shape of the

distribution and the probability of observing the target features in that distribution.

This is akin to an extended signal-detection theory model also suggested by

Rosenholtz (2001). The distribution-based model does, however, not assume that ob-

servers represent the distribution precisely according to the observed feature prob-

abilities or use a specific model (e.g., Gaussian) to make inferences. In contrast,

the distribution PDF is an approximate estimation with the possibility of under-

or overfitting as discussed earlier (see Fig. 2). Recent results demonstrate that search

based on approximations of the distribution can in fact be very efficient (Ma et al.,

2011, 2015).

Search seems to be particularly difficult when a target cannot be easily separated

from distractors in perceptual space. Consider the case of a bimodal distractor dis-

tribution with a target in between the modes, such as the one shown in Fig. 3. Search

of this type is particularly difficult for observers in a number of different feature do-

mains, such as for color, size, or orientation (Bauer et al., 1996b; D’Zmura, 1991;

Hodsoll and Humphreys, 2001; Rosenholtz, 2001; Wolfe et al., 1992). Linear sep-

arability of target and distractor features is a common explanation of such effects:

if a target can be separated from distractors by a single line in a feature space, the

search will be easy, but otherwise hard (Arguin and Saumier, 2000; Bauer et al.,

1996a,b; Nakayama and Martini, 2011; but see Vighneshvel and Arun, 2013). But

an alternative interpretation provided by our distribution-based framework is based
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on the finding that observers seem to approximate a bimodal distribution as unimodal

(cf. Utochkin and Yurevich, 2016). In Chetverikov et al. (2017a, exp. 3), observers

“filled in” the gap between modes and treated a bimodal distribution initially as uni-

form (Fig. 5). However, with increased trial numbers with distractors from the same

bimodal distribution, where observers had more information about the distribution,

their estimates became more precise and separation between the modes (in the

CT-PD RT function) increased. We can then expect the exact approximation to also

depend on the distractor heterogeneity so that the further away the two modes actu-

ally are from each other, the easier it will be to separate them.

Observers typically need a longer time to find a target as the number of distractors

increases. But if a search task is very easy, the slope of the RT� set size function

should be flat instead of positive, according to the predictions of many conceptions

of visual search (e.g., Wolfe and Horowitz, 2017). However, when target color is

unpredictable, negative slopes are often observed (Bacon and Egeth, 1991; Bravo

FIG. 5

(A) Linearly nonseparable (LNS) and (B) linearly separable (LS) displays. Top rows show

example stimuli displays, while bottom rows show schematic representation of stimuli

distributions. With LNS displays the target (column 4, row 4 from the bottom-left) is located

between the two peaks of the distractor distribution. In contrast, with LS displays the target

(column 4, row 2 from the bottom-left) is further away from distribution mean than either

mode. If observers use a crude unimodal approximation, the target feature can be

represented as part of distractor distribution with higher probability in the case of LNS displays

compared to LS displays. However, a more accurate approximation (that could be achieved

with repetitions of the same distractor distribution) will result in decreased distractor

probability density both between and outside the modes. This could potentially make

separable and nonseparable displays more comparable in difficulty.
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and Nakayama, 1992; Kempgens et al., 2013; Kristjánsson, 2015; Santhi and Reeves,

2004; Schub€o et al., 2007; Utochkin, 2013) providing a bit of a puzzle for traditional
visual search models. Notably, despite suggestions that this effect is determined by

local saliency (Wolfe, 2016), studies, where stimulus density was controlled for, sug-

gest that local saliency is only partly responsible (Bacon and Egeth, 1991; Utochkin,

2013). Utochkin (2013) argued that increased efficiency with larger set sizes reflects

increased “statistical power” of a comparison between the distractors subset size and

a target subset that has a size equal to one (that is, a singleton subset). A variance

reduction for estimates of subset summary statistics was suggested as a complimen-

tary mechanism. A distribution-based explanation makes predictions similar to the

ones of a variance reduction explanation: with more data, the estimate of the distri-

bution shape becomes more precise. However, in contrast to a variance reduction

explanation, we expect that not only will RTs decrease with increased set size,

but distribution shapes will also be estimated more precisely. This will in turn lead

to differences in search times depending on distribution shape. Even when two dis-

tributions have the same range or variance, their representation will differ depending

on their shape and hence the difficulty of finding an odd-one-out target will vary as

well. Partial support for these predictions was provided by recent findings where we

found that not only the precision of distribution shape estimates increases with set

size but also that depending on distribution shape set size can sometime have differ-

ent effects on search efficiency (Chetverikov et al., 2017b).

Attentional guidance in visual search also benefits from repetition. There seems

to be a growing consensus that the dramatic effects seen in attentional priming in

visual search tasks reflect activity modulations at various stages of the perceptual

hierarchy (Kristjánsson and Campana, 2010). In the empirical work that supports

the distribution-based framework that we propose here (Chetverikov et al., 2016,

2017a,b,c) such priming is used as evidence of distribution-based encoding of en-

sembles. The typical priming paradigm that involves a single target among identical

distractors can be thought of as a truncated case of distribution-based encoding. In-

terestingly, in experiments with varying set size (Chetverikov et al., 2017b) we found

that both priming effects (effects of changes in target and mean distractor orienta-

tions on search times) and the learning of distribution shape become more pro-

nounced with larger set sizes (cf. Becker and Ansorge, 2013). Importantly,

though, priming effects could occur even without distribution shape learning, sug-

gesting that the two effects partly involve different distribution approximation levels.

The distributional account also poses the question of where attention will be

guided within heterogeneous distributions of features. The idea of using distribution

parameters for guiding vision has repeatedly been suggested in the summary statis-

tics literature (Alvarez, 2011; Ariely, 2001; Chong and Treisman, 2003; Haberman

and Whitney, 2012; Rosenholtz et al., 2012; Utochkin, 2015). Some results suggest,

for example, that memory is biased toward themean of an ensemble representation or

that the mean has higher fidelity than the individual items (Alvarez and Oliva, 2008;

Brady and Alvarez, 2011; Dub�e and Sekuler, 2015; Oriet and Brand, 2013). Atten-

tion may therefore be biased toward the mean as well. But we suggest that
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approximated distribution PDFs are represented rather than only means or standard

deviations. According to our results, there is no preferential representation of the

mean within distractor distributions. For example, when observers encoded uniform

distributions, RTs on test trials were similar within the range of the encoded distri-

bution (Chetverikov et al., 2016). That is, when a target feature was previously the

mean of the distractor distribution, RTs were similar to when it had any other value

within that distribution range. Crucially, this shows that observers did not particu-

larly expect to encounter the mean above any other value within the distribution.

If the mean were always automatically and preferentially encoded, role-reversal ef-

fects should be strongest for the mean, which was not the case. The main difference

between the summary statistics approach and the distribution-based framework pro-

posed here is that the latter does not suggest that summary properties of a distribution

(e.g., its mean) are given any special treatment in perceptual processing. In contrast,

we propose that those are properties that could be estimated if needed, but that oth-

erwise vision is guided by distributions rather than their summary. If observers are

explicitly asked about the mean, they can provide an answer, but it is not specifically
represented. Accordingly, attention is unlikely to be specifically biased toward the

means.

Apart frommean values, heterogeneous distributions, such as a Gaussian one, can

include low-probability items—outliers, in other words. Studies on summary statis-

tics show that during aggregation tasks (i.e., estimation of mean) observers discount

the outliers (de Gardelle and Summerfield, 2011; Haberman andWhitney, 2010). On

the other hand, it is well known that outliers attract visual attention (Treisman and

Gelade, 1980). A question that could be addressed in future research involves

whether observers (a) initially discount the outliers when encoding the heteroge-

neous distribution without an explicit aggregation task and (b) whether such outliers

gradually stop attracting attention when observers learn the distractor distribution.

7 CONCLUSIONS
We propose a distribution-based framework that is based on onemain idea: the visual

system uses representations of probabilistic feature distributions to guide vision. This

simple idea has a wide range of consequences, however. Most importantly, distribu-

tions need to be approximated. The same visual input can therefore easily give rise to

different representations, and the estimated probability of one feature depends on

probabilities of other features both in the past and in the present. Feature distributions

seem to be sampled globally but might depend on segregation by location or other

features. Here, studies on texture perception that assess global statistics or long-range

interactions seem to be highly relevant for understanding distribution encoding.

Once sampled, the distribution representation is updated with new information.

While there are studies of short-term learning, little is known about long-term learn-

ing of complex distributions. However, perceptual learning studies provide examples
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of long-term learning with simple distributions and show that such learning can

change existing biases in different feature domains.

This framework has implications also for visual attention and visual search. Sev-

eral phenomena—the effect of distractor heterogeneity and linear separability, neg-

ative search slopes, and attentional priming—can more easily be understood within a

feature distribution-based framework than with more traditional approaches, such as

guidance by local features and their contrasts. This approach also allows for novel

predictions that can be tested in future research.

There are a number of open questions related to representations of probability

distributions. For instance, to what extent does the precision of observers’ represen-

tations depend on top-down attention and observers’ goals? One might assume that

the more relevant the particular features are, the higher the precision will be. On the

other hand, it might be that additional attention will lead to segmentation of features

into separate distributions. Additionally, does binding of features into objects hinder

their perception as parts of the distribution? Do distributions of different features

bind together? Can observers have different precision of distribution estimates in dif-

ferent regions of single feature domain? Surprisingly, little is known about represen-

tations of distributions as opposed to single features or their conjunctions. In general,

most studies in domains such as visual search use simple homogenous displays. We

believe that while useful, reliance on such displays is not a particularly ecologically

valid approach. The visual world consists of feature distributions and visual repre-

sentations reflect this.
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boundary conditions of distractor distribution learning. Submitted for Review.

Chetverikov, A., Campana, G., Kristjánsson, Á., 2017c. Representing color ensembles. Psy-
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